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ON THE LARGE-DEFLEXION VIBRATIONS OF ELASTIC PLATES

By G.Z. HARRIS anp E. H. MANSFIELD
Royal Aircraft Establishment, Farnborough, Hants
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Eé An exact large-deflexion analysis is given of the free vibrations of unsupported elliptical plates of

lenticular section, whose middle surfaces may be flat or uniformly curved. The solution is confined
to the three ‘fundamental modal components’, two bending and one twisting, for these are the most
susceptible to large-deflexion effects. Particular attention is paid to the determination of modes,
and their stability, in the large-deflexion régime. Many of the results are of importance in the
general field of nonlinear plate vibrations.

1. INTRODUCTION

The theoretical analysis of the vibration of plates is of importance in many branches of
engineering, and it has received considerable attention in the scientific literature. One of
the first investigators to consider the vibrations of rectangular and circular plates was Lord
Rayleigh (187%) in his classic treatise on the Theory of Sound. This, and virtually all

Y B \

= subsequent work, is restricted to the small-deflexion vibrations of plates of constant thick-
< — q P

> ness. There is now, however, an interest in the vibrational behaviour of plates of variable
olm ? p

M thickness, particularly in the field of high-speed aerodynamics where they may form the
%) 5 lifting and control surfaces of missiles. For such problems approximate techniques are
= O ossible, based on a discrete element representation, but the resulting accuracy would be
s P p g y

in doubt because of the lack of exact solutions with which comparisons may be made.
Furthermore, if the plate is curved the influence of membrane action is important, even if
the curvature is slight and the deflexions small; indeed, the analysis must now take account
of equilibrium and compatibility in the plane of the plate. There is, in addition, an
increasing interest in the large-deflexion behaviour of plates, whether flat or curved,
because- it is known that the effective stiffness of plates is altered in the large-deflexion
régime owing to the introduction of membrane action, and there is a consequent change in
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290 G. Z. HARRIS AND E. H. MANSFIELD

the natural frequencies and, in general, in the mode shapes. The equations governing the
large-deflexion vibration of plates of constant thickness were considered in great detail by
Hermann (1956) who showed that inertia effects in the plane of the plate may be neglected,
thus yielding the von Kdrmdn (static) equations in which the normal loading is replaced
by an inertia loading of reversed sign. Using a perturbation procedure based on these
equations, Chu & Herrmann (1956) have considered the free large-deflexion vibration of
a rectangular plate with hinged, immovable edges. They show that membrane action
introduces a coupling effect between the fundamental (small-deflexion) mode and higher
modes; by ignoring this coupling they obtain approximate solutions for the timewise varia-
tion of the amplitude of the fundamental mode. There are, needless to say, no large-deflexion
plate vibrations which vary purely sinusoidally with time, but the main difficulty in
obtaining exact solutions stems from the fact—highlighted by Chu & Herrmann—that

large-deflexion plate vibrations are seldom ‘in unison’, so that the transition from a small-
deflexion mode to a large-deflexion mode does not simply involve a new amplitude-time
variation. Information of a quantitative nature on nonlinear vibrations in structures with
more than one degree of freedom can, of course, be determined by the analysis of simple,
idealized systems. Thus the nonlinear vibrations of certain mass-spring systems have been
considered by a number of writers including, in particular, Rosenberg who gives numerous
references in one of his own papers (1964) in which he discusses the existence and significance
of nonlinear modes. Such studies are valuable, but there is no technique available for relating
mass-spring characteristics to a plate undergoing large-deflexion vibrations.

In this paper we consider the free vibrations of an unsupported elliptical plate of lenticular
section whose mid-surface may be flat or uniformly curved, the directions of the principal
curvatures not necessarily coinciding with the axes of the ellipse. Our primary purpose is
to show how the vibrations of such a plate are influenced by large-deflexion phenomena
and this has been achieved without recourse to any simplifying or restrictive assumptions,
for the solutions presented are exact within the spirit of large-deflexion plate theory. At the
same time the results of this nonlinear analysis are simpler to understand in terms of, or in
comparison with, the linear small-deflexion behaviour, and this aspect has been com-
prehensively treated in § 4. It is hoped, moreover, that the results of this linear analysis will
themselves be of intrinsic value, particularly in so far as they relate to a plate of variable
thickness and to a plate with initial curvatures. Attention is confined to the three ‘funda-
mental modal components’, two bending and one twisting, but this limitation does not
detract significantly from the practicality of our analysis because vibrations which include
these components are the most susceptible to membrane action, whether due to initial
curvature or large deflexions. This susceptibility has much in common with the behaviour
under an axial thrust P of a laterally loaded strut of length I, whose lateral deflexions
depend upon the rigidity of the strut and the parameter PI?; again, if the strut is subjected
to a given bending moment A the resultant ‘end shortening’ varies as M23. In a plate the
higher harmonic vibrations are characterized by shorter wavelengths and a correspondingly
much reduced influence of membrane action.

The complexity of the large-deflexion analysis, whether static or dynamic, of plates of
constant thickness is widely recognized, while even the small-deflexion analysis of plates of
variable thickness generally presents formidable difficulties. It might therefore be construed


http://rsta.royalsocietypublishing.org/

. |
/I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

LARGE-DEFLEXION VIBRATIONS OF ELASTIC PLATES 291

that the present analysis would be doubly complex, but this is not so. To understand why,
it is expedient to refer first to the large-deflexion behaviour of statically loaded, constant
thickness plates with free edges. In the vicinity of the edges there are severe variations in the
stress pattern—variations which become more abrupt as the load is increased—and it is
these ‘boundary layers’ (a concept introduced by Fung & Wittrick 1955) which add so
much to the complexities of analysis. However, as shown by Fung & Wittrick (1954) and
Mansfield (1959) in the large-deflexion analysis of certain strips with lateral thickness
variation, plates which taper linearly to zero at their edges do not exhibit these boundary
layers; indeed, the occurrence of a boundary layer, whether at the edge or elsewhere,
depends on there being an abrupt change in the rigidity or in the rate of change of rigidity;
the rigidity of a plate of constant thickness is to be regarded as falling abruptly to zero at a
free edge. Plates, whose rigidity and rate of change of rigidity vary smoothly everywhere and
vanish at the (free) edges, do not exhibit localized regions of severely varying stress and they
therefore lend themselves to exact large-deflexion analysis. Such plates have an application
in the field of high-speed aerodynamics. Elliptical plates of lenticular section, which com-
prise the simplest class of such plates, were considered first by Mansfield (1965) in a large-
deflexion analysis of their pre-buckling and post-buckling behaviour under certain tempera-
ture variations in their plane and through their thickness. Now it is well known that in the
small-deflexion régime there is often a close relationship between the buckling modes of
plates, whether thermally or mechanically induced, and the vibrational modes;; this is again
apparent in the present large-deflexion studies.

2. SYMBOLS
2a major axis of ellipse
2b minor axis of ellipse
4, B terms introduced in equation (27)

€15 Coy €5 arbitrary constants

D, D, flexural rigidity of plate defined by equation (4)
E Young’s modulus

fe arbitrary functions

F(k,a;) incomplete elliptic integral of first kind

h, hy thickness of plate defined by equation (3)

H term introduced in equation (33)

k term introduced in equation (49)

ki, ...,k, terms introduced in equations (44), (51), (82) and (84)
K (k) complete elliptic integral of the first kind with modulus £;
m term introduced in equation (115)

p,q,7,s  terms introduced in equations (77) and (82)

t time

U* strain energy in plate

U nondimensional measure of U* introduced in equation (68)
U, maximum (initial) value of U

U, value of U introduced in equation (73)

w deflexion of plate measured from a reference plane

36-2
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292 G. Z. HARRIS AND E. H. MANSFIELD

X,y Cartesian coordinates in planc of plate, Ox lying on major axis

@, ...,as terms introduced in equations (44), (51), (82), (84) and (86)

B term introduced in equation (8) defining the middle surface forces
¥ parameter defined by equation (63) or (93)

Y15 ---5 Y4 Toots of equation (75)
€1, 69,6,  terms defining small-deflexion modes, cquations (15) and (20)
€,,€5,¢5  values of ¢, ¢,, ¢, for a flat plate

4 bla

n term introduced in equation (89)

0 term introduced in equation (113) defining initial velocity ratio
K nondimensional curvature

K. Ky K, ~nondimensional curvatures introduced in equation (7)

Ky, Ky, Kxy maximum or zero-time values of k, x,, &,

A term introduced in equation (24)

A parameter defined by equation (63) or (93)

U term introduced in equations (5), (7) and defined in equation (9)
v Poisson’s ratio, assumed to be 0-3 in numerical calculations

p density of plate material

s Tys Ty direct and shear stresses in plate

T non-dimensional measure of time, defined in equation (9)

d force function introduced in equation (1)

Q nondimensional frequency, 27/(increase in 7 during one cycle)
Q, values of Q defined by equation (63) or (93)

V2 Laplacian operator

Ot bilinear operator defined after equation (2)

Suffix 0 after w, «,, &, &, refers to the undisturbed state

Suffix d, b, or t, after Q or ¢ refers to dishing, bending or torsion mode
Suffix e or ¢ after € refers to extensional or curling mode

Suffix s or u after y or U refers to the stable or unstable equilibrium state
Asterisk * after f§ or & refers to critical buckling conditions

A dot denotes differentiation with respect to 7.

3. ANALYVSIS

Within the spirit of large-deflexion plate theory the governing equations may be expressed
(Mansfield 1962) in the form

V(5 V20) — (14) 0% (5, ) + 1B (w,10) 4wy )} = 0 (1)
and V2{DV2(w—wg) }+ ph %? = (1—v) 04D, w—wy) +04D,w), (2)

where the diamond operator, ¢ (pronounced ‘die’) is defined by
04(f,8) = H(VY) (V2e) +- V(S Vg + gV ) — H{VH(Je) +/ Vig+eVY}
Py, Bf Fg | Pf g

Oox® oyt T Oxdy dxdy  Oy? ox®
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LARGE-DEFLEXION VIBRATIONS OF ELASTIC PLATES 293

In these equations % is the plate thickness, £ is Young’s modulus, v is Poisson’s ratio, p is the
density of the plate material, D is the plate rigidity, w is the deflexion and ® is the force
tunction from which the middle-surface (membrane) stresses are to be derived from the

relations 20 20 20
ho, =, ho,=—+—, h1, =—-"m.

o dy? vy ox? Y dx dy
The introduction of the force function assures equilibrium in the plane of the plate, while
compatibility of strains is assured by equation (1). Equation (2) is the equation of equi-
librium normal to the plane of the plate. These equations are simply generalizations of
von Kdrmdén’s large-deflexion equations taking account of varying thickness and rigidity.

The thickness of the plate varies parabolically across a diameter, vanishing along the
boundary according to the equation

XZ 2
(1, o

where £, is the thickness at the centre and a, b are the semi-axes of the plate. The rigidity D

is given by 2 gns
D=Dy(1-5)
(4)
ER}
where D, = TQ(TW—OWS .

In its undisturbed state the plate is free from stress and its mid-plane is either flat or
uniformly curved according to the equation

wy = — K0 (¥ — %) Ky 0 89 + 4,0 (47— 50) ()

where g is a dimensional constant, introduced for convenience and defined later (equation
(9)), and , o etc. are nondimensional measures of the curvatures; the grouping of the terms
(x2—La?), (y>—¥b?) is chosen such that

”Ahwodxdyzo. (6)

3-1. Method of solution

The method of solution is in two distinct phases. The first phase is an inverse one in that
general expressions are assumed for describing the spatial variation of w and ®. These
expressions (three for w and one for @) satisfy the edge conditions and are shown to be
capable of satisfying the governing coupled nonlinear equations (1) and (2). In the second
phase the solution is completed by proper choice of the corresponding variations with time.

3-2. General expressions for w and ©

The point has already been made that the nonlinearities arising from large deflexions
are of practical significance only for the lower modes. We therefore confine our attention
to the three ‘fundamental’ modal components—two bending and one twisting—and search
for a solution in the form

w = — i (2 — §a?) + 6, xy+ 3, (42— 30%)), (7)
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294 G. Z. HARRIS AND E. H. MANSFIELD

where «,, &, k, are functions only of time. It may be verified that each term in equation (7)
satisfies equatlon (6) with w, replaced by w, and hence ensures that the c.g. of the plate
remains stationary.

‘The general form of equation (7) is similar to that considered by Mansfield (1965) and

in like manner we make the tentative assumption that the force function @ is of the form
& = pD (8)
where f, which is nondimensional, is a function only of time. This is tantamount to assuming
that while the magnitude of the middle-surface stresses varies with time, their distribution
does not.
3-2-1. Stresses in the plate
The force function given by equation (8) yields the following middle-surface stresses

B '_/)’E/zZ ( x2 y)
O = 2(1~~1}2)bZ 1= a? 5[72

. PER ( 363_9_2)

Oy = (1——V2)a2 I— 542 Bk
B QﬂEhOng

A )y R

The bending stresses vary linearly through the thickness of the plate. On the face which is
in the direction of positive w the bending stresses are given by

% = 51—y e Ko T V(K Ry o)s

7, = 5o >{/< Kyt V(K=K )}
pEh
Txy = (1 —{—V){ ny,O}‘
3-2-2. Edge conditions

At the edge of the plate there are no applied forces or moments and these conditions are
satisfied because, at the plate boundary,

oD o0
D=Zy=0=%=5

where 7 is measured normal to the boundary.

It remains to show that these simple expressions for w and ® are, in fact, capable of
satisfying the governing differential equations and hence of providing the true solution.
First, however, we define the dimensional constant g, and hence the nondimensional
curvature parameters introduced in equations (5) and (7), and introduce a nondimensional

measure of time: By 4+2u+5(§2+§f -2)
o),
where = bla, (9)
12 (D,
and T=r (ﬁz;,) .

A dot will denote differentiation with respect to 7.
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3-3. Satisfaction of the governing equations

The spatial satisfaction of equations (1) and (2) by the assumed forms for w and @ is
readily shown by direct substitution. Thus, referring to equation (1), it is to be noted that
124D,
v2 (5 ve) = ﬂ2bg{2+5(§2+c~2)},

— 244D,

4 ki st

o (}z’ (I)) - hya?h?’

10w, w) = u?(k .k, —K2,),
%04(“}0) wO) = /lZ(Kx,OKy,O_KJ%y,O)'

Equation (1) therefore contains only terms which are functions of time and independent
of x,y; it can be written nondimensionally in the form

/)’ = x,OKy,O——K:thy,O—“KxKy'+_K32cy‘ (10)
Referring to equation (2) it is to be noted that
VZ(wva) :IL‘(KxO—I_K ,O_Kx'—Ky)a

VD = Db (1Y (18 (o )+ (150 (12— H0)
4 (1—) 04D, w—w,) +04(D,w) = 04D, (1—v+f) w— (1—v) wy},
an

o {D 3o, (¥ — §a?) +coxy + Jes (3% — §6%)}

=Dy (12 Y (o1 -50) (4 hat) — Syt (et 5C20) (12— 409

a?

Thus, confining attention to the spatial variations, each term in equation (2) varies as
the product of (1—=x2?/a?—y?/b?) and one of the ‘modal components’ (x?— §a?), xy or
(y2— §b%). For the equation to be satisfied it follows that the coefficients of terms which vary
in like manner must vanish, and this gives rise to three equations which can be expressed
nondimensionally in the form

(582+v) (Kgo—K,) + (1 — 5vC?) (Ky.o“Ky) +p(k+50%,) = 128, (11a)
(1450{72) (Ko —K,) + (B2 +w) (Ky0— )+-/3’(5C‘2/< +K,) = 12£,, (116)
(I—V) (ny,O xy) Ib)"xy 3 x . (116‘)

A significant feature of equations (10) and (11) is that the only deflexion components
involved are k,, , and «,,. Thus, when the initial conditions involve only these components,
so does the subsequent motion; higher modes are not introduced.

3-4. Initial conditions

Thus far the analysis has shown that, for the class of plates considered here, equations (1)
and (2) reduce to equations (10) and (114, b,¢) in which p, «,, «,,, k, are functions only of
time. The further integration of these equations—described earlier as the second phase of
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296 G. Z. HARRIS AND E. H. MANSFIELD

the solution—introduces the conditions at zero time. A variety of such initial conditions
can be envisaged, but attention here is confined to two basic forms, namely

[Kx3 Ky Ky]7=0 = K00 Kay,00 Ky0 ]

- 12
with [y Ky K, ], =0 having specified values, | =

which corresponds to the application to the undisturbed plate of a specified impulse, and

[kx) kxy’ ky]7'=0 =0 ‘l

with [Ke Kyys Ky, having specified values, |

(13)

which corresponds to the release of a specified restraint.

It will be realized that, because of the nonlinearity, an analytical solution of equations
(10) and (11) is not generally possible and it is often necessary to introduce numerical values
at an early stage. Furthermore, in order to obtain a clear picture of the nature of the plate
vibrations it is advisable to consider first the simplest types of vibration, such as small-
deflexion vibrations of a flat plate, before considering the more complex nonlinear types.

4. SMALL-DEFLEXION MODES
In the small-deflexion régime the behaviour of the plate is linear and it possesses normal
modes of vibration. The properties of such normal modes (e.g. independence and super-
position) are well known and these introductory remarks are purely cautionary to emphasize
that in the large-deflexion régime the concept of a normal mode has a much reduced
significance.

4-1. Flat elliptical plate

If the plate in its undisturbed state is flat the terms «, g, etc., are zero and equation (10)
then shows that when small-deflexion vibrations are being considered the term f is to be
neglected in equation (11). The governing (linear) equations are therefore

(62 +v) kA4 (1 5v(?) k, 12K, = 0,
(145082 K, (5L 24-v) k, + 128 = 0, (14)
(1—v)k,,+ 3K, = 0.

Normal modes may be determined by writing

(Kw Ky> ny) = (619 62’ 63) eiQT (]' 5)

~

where Q is a nondimensional measure of the frequency. Substitution of equation (15) in
equation (14) gives

502++v—120?2 1+ 5v8? 0 €
1-+5p(~2 5024 p—12Q2 0 € | = 0.
0 0 4(1—v)—1202] \e4

The three modes thus defined are best described by the terms dishing, bending and torsion and
accordingly, for ease of identification, we introduce the corresponding suffices d, b and t.
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The torsion mode is the simplest, in which

€i:e5:e5=10:0:1

so that the modal contour lines are rectangular hyperbolas, and (16)
Qt = {%(1 f_V)}%’
In the dishing and bending modes the amplitude ratios are given by

€:6563 = 1+4+5v(2:12Q02— (5(2+v):0, (17)
where 24202 = 5(14+ ) 4+ 202+ {25(1 — {*)2 4+ 4L4(1 + 5v) 2+ 200(2(1 — ()2}, (18)
2402QF = 5(14*) + 20— {25(1 — {*) 2+ 4041+ 5v) 24-20002(1 — () 2. (19)

DISHING

BENDING
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THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

TORSION

a=1"b

TORSION

a=15b
Ficure 1. Small-deflexion modal contour lines.

TORSION

a=20b

It may be verified that for the dishing modee, ¢, > 0 and the modal contour lines are therefore
ellipses, while for the bending mode ¢,¢, < 0 and the modal contour lines are hyperbolas.
Modal contour lines for the dishing, bending and torsion modes are shown in figure 1 for

37

VoL. 261. A.
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298 G. Z. HARRIS AND E. H. MANSFIELD

various values of {. As { varies from 1 to 0 the ratio €5/} varies from —1 to —v, this latter
value corresponding to the anticlastic curvature due to the Poisson’s ratio effect in the
bending of a long strip. [The association of the term bending with a significant degree of
anticlastic curvature is to be noted. When the anticlastic curvature is very small, or zero, we
use the term curling.]

Figure 2 shows the variation of 4, Q, and Q, with {. It is to be noted that

Q> Q.= Q,,
the equality sign occurring for the circular plate ({ = 1) where, as a by-product of the

rotational symmetry, the torsion and bending modes—w, ¢ xy, w,oc (x2—y?)—are
effectively identical.

24

-
(=2

nondimensional frequency, Q

08 M
0, —
P —
—
0 o) o4 06 08 70
¢

Ficure 2, Small-deflexion dishing, bending and torsion frequencies.

4-2. Curved elliptical plate

The small-deflexion modes of a curved plate are of the form

(Ky ™ Kyy09 Ky = Kpp0 Ky = Kino) = (€1, €9, €5) €197 (20)
and equation (10) shows that the middle-surface forces cannot now be neglected, for we
h .

ave /9 = (Ky,Oel +Kx,O("‘Z - Qny,OGS) CIQ’, + 0(62) . (21)

Substitution of equations (20) and (21) in equation (11) yields the following equation for
the modes and frequencies

50 +v 1452 0 Kot 5§2Ky,0 (Ky,0> Ky — Qny,o) €1 €
14-5v~2 5(~2+vp 0 +§ K050k, €y | =120% 1 ¢,
0 0 4(1—v) — 4,0 1 \eg €5

(22)
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The effect of curvature is, in general, to cause a higher natural frequency than for the
corresponding flat plate. There are, however, exceptions to this rule which occur when the
curvatures are such that

(Ky,m K0 “‘2’<xy,o) €] =0, (23)

where (€,,€,,€,) defines a mode for the flat plate. In such a case the curved plate possesses
the same mode and corresponding natural frequency as the flat plate; also, as would be
expected, middle-surface forces do not occur and the term £ is zero. The simplest case for

3
I | \ 7\1 I
oy 06
L > ol _
Kyo 0-483
x 05
5806
, : 06
-3 > - o A ‘
‘Sré\ }I\O Kx,o 2 3
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Q,=2:0 04—
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08
25 2 .
30 | l ST !

Frcure 3. Variation of frequencies with initial curvatures; «,,, o = 0, = 1.

which equation (23) is satisfied occurs when «,,, , is zero; the fact that €),is then independent
of &, and «,, is immediately apparent from equation (22). The variation of Q4 and £
with &, and &, with &, ; zero, is shown in figures 3 and 4 for plates in which { =1 and 3.

4-2-1. Plate with large curvatures

Apart from the special cases which satisfy equation (23) a proportional increase in the
curvatures causes an increasein the natural frequencies, but to obtain an idea of the extent
of the increases in frequency we consider here the asymptotic behaviour of a plate in which

(Kx,OJ Ky,03 ny,O) = A(K;,OJ K;/,O’ K;y,0)> SaY’ (24)

as 1 —>0c0. This is in the realm of shallow shell theory and, in order not to violate the assump-
tion of shallowness, it is preferable to regard the increase in the nondimensional curvature

37-2
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300 G. Z. HARRIS AND E. H. MANSFIELD

symbols as caused by a decrease in thickness rather than an increase in actual curvature.
With this proviso in mind we substitute equation (24) in equation (22) and first search for
a solution in which Qis of order A. The limiting form of equation (22) is doubly degenerate
and accordingly there is only one such root; it is given by

12Q2~ 522+ 2k, oK, 0+ BLKE 8K, o, (25)
and the corresponding mode shape is given by

61169263 = Ko+ B, 01Ky 0+ 502,00 — 4K,y 00 (26)

3
Qb2

Ficure 4. Variation of frequencies with initial curvatures; «,, , = 0, { = 4.

This is an extensional mode in that it is governed by the in-plane stiffness of the plate rather
than the flexural stiffness. Note that this extensional mode cannot necessarily be identified
with the terms dishing, bending or torsion, for by suitable choice of the initial curvatures
any desired mode shape may be obtained. The two other modes are flexural in character
and are obtained by searching for solutions of equation (22) in which € remains finite as
A—00. The resulting quadratic in Q? simplifies to

BAQ— QA (1—0) £ 6B 102, o({—{ )2} +2B(1—) = 0,
where A = 5825 o+ 26, 0Ky o+ BEKY o+ 8205 (27)
B = k2 ,—2uk,, Ky0 —]—Kg,,o—[— 2(14v) Kﬁy,o.

These asymptotic frequencies depend on the ratios, rather than the magnitudes, of the
initial curvatures and are plotted against «,/k,,0 and «,/«,,, in figure 5 for a plate in
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which { = §. This presentation loses its significance if «,,, is zero when, as shown below,
the frequencies assume a particularly simple form.

Plates with no wnitial twist. When «,, , is zero equation (27) factorizes to give

Q= 3(1-) (28)

xy,0

Q2 _ 2 (K:%,O - 2VKx,O Ky,O + K?/,O) . (29)
5€_2K72c,0 + 2Kx,0 Ky,O + 5€2K§,0

’ [
Kyof ny./OT/ O-[I
‘9

and

-4 |

Ficure 5. Variation of asymptotic frequencies with curvature ratios: { = 4.

This simplification is possible because equation (23) is now satisfied by the flat plate torsion
mode which is therefore a mode for the curved plate. The frequency corresponding to
equation (29) is plotted against «,o/k, , for various values of {in figure 6. The mode shape
corresponding to equation (29) is given by

€1169163 = Kyl —K, 010 (30)

and we note that this is not necessarily associated with either the bending or dishing mode.
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Thus when «,,, say, is zero the component ¢, vanishes and the mode is best described as
a purely curling mode whose frequency is given simply by

=3 (31)

This curling frequency is the same as the fundamental frequency of a free-free beam whose
stiffness and inertia vary in the same manner as in the plate; indeed, the actual curling

frequency—as opposed to the nondimensional frequency—is independent of the plate
width .

1.2
a
>
g 08
[}
=
o
(5]
3=
3 I
,% I =1
L

(0]
.g 4 \ 2
° 3
o]
Q 1
=t 9

O 1 2 3 4 5

Kx,O/Ky,O

Froure 6. Variation of asymptotic frequencies with curvature ratios; «,, , = 0.

4-2-2. Variation of modes with initial curvature

‘The analysis of § 4-2-1 shows that as the initial curvature parameters tend to infinity one
of the modes becomes extensional while two remain flexural in character, but the asymptotic
analysis presented there does not tell us which of the three flat plate flexural modes changes
its character. Thus it is convenient to envisage a continuous family of plates specified by
equation (24) in which A increases uniformly from zero to infinity. Associated with this
family of plates there are therefore three families of modes; by tracing the development of
these modes with A a complete picture of the mode behaviour is obtained. ,

Circular plate. Because of the cumbersome nature of the general analysis it is expedient to
restrict attention first to the circular plate for then, without loss of generality, we may take
K0 = 0. This also means that the shape and frequency of the torsion mode do not vary
with A, and we are left to consider only the dishing and bending modes for which equation
(22) yields

12Q% — Q210420+ A2(5K.% + 2k, oKy 0+ 56720)
+2{1 =2 H (k% — 20K, 0Ky 0+ K70)} = 0. (32)
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The roots of this equation may be cast in the form
2402 = 10420+ A2(56,% + 2Ky o Ky o+ K20 ) + HE, (33)

where H = [24-1004-A2{3(k o+ K}, 0)2— 2(Ky0— K7y 0) ]2+ 2404 (k.5 — K720) %
By considering the behaviour as 400, we see that the extensional mode is associated with

the positive value of H*. Now as A - 0 this extensional mode is traced back to its origin in the
flat plate mode whose frequency is given by

Q2 = 3(1+) (34)

and this identifies it as the dishing mode. (See equation (18) with { = 1.)
The fact that the origin of the extensional mode does not depend on the ratio of the
initial curvature is perhaps surprising, particularly in that it must be reconciled with the

fact that if , '
act thatd Ko = —Kyo (35)

the dishing mode and frequency are the same as for the flat plate, in virtue of equation (23);
furthermore, from equation (26) the extensional mode shape coincides with that of the
bending mode. This apparent contradiction can only be resolved if, at some value of A, the
dishing and bending modes interchange. Such interchange can only occur if the bending
and dishing frequencies coincide so that there is a state of modal indeterminacy. A fre-
quency coincidence only occurs if the parameter H in equation (33) vanishes, and accord-
ingly we consider this possibility in greater detail.

~ The parameter H is the sum of two squares and it can therefore vanish only when each of
these components vanishes. The second component vanishes when

14 14
Kyo = 1=Ky,05

but the plus sign is inadmissible because it results in an essentially positive and nonzero value
of H. Taking the negative sign gives

H=(2+10v—8k2,)?
and this vanishes when kZo= %(1+5v), : (36)
at which point =002 =1(1+v). (37)

The apparent contradiction is thus resolved. The actual mode variation is well illustrated
by considering a small dishing component superposed on the initial curvatures of equation
(35) such that Kep = (1 + 3) K,

X

K0 = —(1—0)«, say.
The variation of the frequencies with « is shown in figure 7 for § = 0-03, 0-1. In the vicinity
of k = 4(1+5v)* there are abrupt changes in the shapes of the lower and higher frequency

modes.

A numerical example. 'The analysis so far has been in terms of nondimensional curvature
parameters. In order to give a clearer physical picture of the influence of initial curvatures
on the small-deflexion frequencies we now express equation (36) in terms of deflexions and
plate thicknesses.

From equation (9) with { = 1 and v = 0-3,

#= 4/ZO/dZ:w
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whence, from equation (5),

[wo]x:(),yzo'" [wO]x=:!:a,y:0 = 2hyK .0,
= 1-584,
in virtue of equation (36), a result which is independent of the radius of the plate. Finally,
we note that equation (37) implies a 67 9%, increase in bending frequency compared with
that for the corresponding flat plate.

18
15 _ZZ
o 47
W2 o
B2
12 2
//
/8:0.1/ P~
09 y
DISHNG | |  -><§-0-03 DISHING
B 8=0-1
o6 SENDING
-*—/
03
0 04 0% 77 6
K

Firoure 7. Frequency and mode variation with initial curvature:
Ko = (14+8)k, k9 = — (1~0)«. Circular plate (§ = 1).

Elliptical plate. For the elliptical plate it may likewise be shown that the extensional mode
has its origin in the flat plate dishing mode. Indeed, this follows from the fact that the
frequency curves ({2 against A) ‘cross over’ only in exceptional circumstances, and when
this occurs there is a state of modal indeterminacy and a corresponding ambiguity in
interpreting the paths of the curves. We have resolved this ambiguity by considering the
limiting behaviour, as in the previous discussion of the circular plate.

Figure 8 is an illustrative example which shows the variation of the frequencies and
mode shapes with «,, for a plate in which

£ ==

and - Koo i Ky Kayo = €31 — 1:0563:0-05¢5

colro

where (¢, €3, 0) is the dishing mode for the flat plate. This ratio between the initial curva-
tures has been chosen because it contains small perturbations from the relation

. . — pd. d.
K0 Kyot Kyyo = €10 6310
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which satisfies equation (23) for the dishing and torsion modes. There are accordingly in
figure 8 two regions in which abrupt changes occur in the mode shapes associated with
each of the frequency curves.

20 /

16 ©) =
oY
S

\

DISHING / DISHING

Q
[=-]

<
<
\%

TORSION TORSION.
04 BeND\NG
Y 02 04 06
Kx,()

Ficure 8. Frequency and mode variation with initial curvature:
Koot Kyt = €51 —1:08¢5: 0-05¢3, elliptical plate (§ = §).

5. LARGE-DEFLEXION VIBRATIONS

It has already been mentioned that the concept of a mode has a much reduced significance
in the large-deflexion régime. This is because of the nonlinear coupling effects which pre-
clude the superposition of different modes, and hence preclude the analysis of a complex
vibration by means of some normality principle. However, as Rosenberg (1964) points out,
the concept of a mode as a free equiperiodic vibration—i.e. one in which

wx,y,t) = wlx,y,t+T),

where 7T is the period of vibration—has some practical significance in that resonance of
a structure occurs in the neighbourhood of the frequencies of such vibrations. Of course, in
a nonlinear system the modal frequency is dependent on the amplitude so that for ‘optimum’
resonance conditions the frequency of the disturbing agency should match the varying
modal frequency. The simplest type of nonlinear mode—being most closely related to a
mode in a linear system—is the ‘free vibration in unison’ defined here by the relation

w(x, y,t) = wlx,y) f(2).

38 Vor. 261. A.
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We will shortly consider examples of such simple nonlinear modes, but they are the excep-
tion rather than the rule. Indeed, if we postulate that each small-deflexion mode has a
continued existence—in one form or another—in the large-deflexion régime, we find that
we must dispense with the requirement of vibration in unison and adopt the following less
restrictive definition of a mode:

(i) the motion is equiperiodic,
(ii) in each complete cycle there are two times at which all the velocities vanish,

(iii) thereis atleast one component of the vibration which varies monotonically between
the states at which all the velocities vanish.

Items (i) and (ii) alone would be too general because they include, for example, all small-
deflexion vibrations compounded of two or more modes whose periods have a common
factor. Item (iii) has been introduced in an attempt to avoid this difficulty. From a practical
standpoint it would not have been satisfactory to stipulate that all components of the
vibration vary monotonically because, as will be shown later, this would often exclude the
most important large-deflexion equiperiodic vibrations, namely those which have the
lowest frequency for a given level of energy. Note also that in a small-deflexion modal
vibration all particles pass through the equilibrium position at the same time, whereas in
the large-deflexion régime this is generally not so unless the plate is initially flat or the mode
is a vibration in unison.

Finally, some general observations on the form of equations (10) and (11): These contain
no first derivatives with respect to 7 because there is no damping and the plate is elastic.
Accordingly, for every large-deflexion free vibration there is another in which the sign of
7is reversed. In particular, if in any free vibration the plate becomes instantaneously at rest
the subsequent motion is a mirror-image of the previous motion; the plate ‘retraces its
steps’. In addition, if the plate is initially flat the equations are unaltered by a change in
sign of the curvatures, so that if the plate passes through the (flat) equilibrium position at
zero time, say, the subsequent motion is determined by the relations

Kx<T) = _'Kx<_7‘)> Ky(T) = —Ky(_T)a ny(T> = "ny(_7>'

5-1. Flat curcular plate

For the flat circular plate equations (114, b,¢) simplify considerably, particularly if the
sums and differences of (¢) and (%) are considered, so that

2(Ry4K,) + (1+) (K +k,) = (K, +K,) = 0, (384)

3(Ry—Ky) +(1—v) (k;—k,) +f(k,—k,) = 0, (380)

3R+ (1—v) k+fr,, = 0, (38¢)

where, from equation (10) f = K5y —K.K,. (39)

The particular merit of writing the equations in this form is that it is immediately
apparent that there exist vibrations characterized by

K, = Ky,l

Kyy = 0, J (4())
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so that only the dishing mode is present, or
ke = —Kp| (41)
Ky =0, |
so that only the bending mode is present, or
Ky =k, =0, (42)

so that only the torsion mode is present.

5-1-1. The dishing mode
Equations (385, ¢) are satisfied by equation (40) above, and equations (384) and (39) are
satisfied if 2% 4 (14-v) K, K3 = 0. (43)

The relation between «,, 7 (0r k,, 7) can be expressed in terms of incomplete elliptic integrals,
whose precise form depends on the initial conditions. If these are such that

[Kx =0 " O’
and [Kx]1=0 = Ky, 5ay,

2 3 oy d"ﬁ
h ~(iora) |, oo
then 4 1+v+«%) Jo (1—A2sin2y)?

2 b3

~ (i) Fna), (44)
h e k2 — ____Kj{.___‘

wher V7 2(1+v44%)’

% = COS—I(Kx/KX))
and F(k,,a,) is the incomplete elliptic integral of the first kind. The motion is periodic and
the frequency is given by L mA4vad)

= TSR (45)

where K(k,), = F(k,, 17, is the complete elliptic integral of the first kind with modulus £;.
The velocity of the plate is a maximum as it passes through the equilibrium position

where it is given by [£] o0 = Kx{3(147) + 22} , (46)

By means of equation (46) the solution can be adapted to accommodate initial conditions
in which «, is zero and £, is specified.

5.1.2. The bending and torsion modes

In the small-deflexion régime the bending and torsion modes for the flat circular plate
are essentially the same, differing only in their orientation to the (arbitarily chosen) refer-
ence axes. This is a result of the rotational symmetry of the plate and, as such, is valid in the
large-deflexion régime. Thus for the bending mode, equations (38) and (39) are satisfied
by equation (41) if «, satisfies the equation

8k, + (1—v)k,+«3=0. (47)
g8-2
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Similarly the torsion mode, equation (42), is a solution if «,, satisfies the equation
3Ry (1=v) k&3, = 0. (48)

By the same token, a linear combination of the form

K, = K, say
K, = —K, (49)
Ky = kK,

is a solution if « satisfies the equation
3K+ (1—v)k+ (1+£2) k3 = 0, (50)

but if the reference axes are chosen to coincide with the principal axes of curvature, or with
the axes of maximum twist, the form of equation (50) reduces to that of equation (47) or (48).

The bending and torsion modes have much in common with the dishing mode and, as no
generality is lost, the discussion is limited to the torsion mode. Thus, if the initial conditions
are such that

[kxy]r=0 =0,
and [Kuylr—0 = Kxps s2Y
h 5 ) Fa
then 7= (i":;_“l_“;XY) (kgs o3) 5
o Ky (51)
where k% = ST —vresy)’
ay = cos™(k xy/KXY)'
The motion is periodic and the frequency is given by
2
o (1 HV"{'KXY)_
&= 12{K (k)2 (52)

The velocity of the plate is a maximum as it passes through the equilibrium position where
it is given b , 1
Hee Y [£ Kayliry=0 = Kxpiz (1 —v) + &%y} (63)

5:1-3. Stability of the dishing, bending and torsion modes

In discussing the stability of the dishing, bending and torsion modes it is instructive to
consider first the mode behaviour when the maximum curvature is very large. When

k%, k% or ki, > 1

equations (45) and (52) show that the frequencies vary asymptotically in direct proportion

to the amplitudes
O~ M 0599 k4,
(T} }2! x| x| (54)

Qu~ 0:489 |k xy| = 0-599(2)F [k 4, |-

The reason for this is that the motion is now governed by the middle-surface forces which
arise because the mode shape is not a developable surface; in other words, the £ term in the
governing equations has assumed a dominating role. The middle-surface forces vary as the
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square of the plate curvature and their normal component which acts as a restoring force
therefore varies as the cube of the curvature. It is this highly nonlinear behaviour which
causes the frequency to vary in proportion to the maximum curvature. Note that this
asymptotic variation of frequency with maximum curvature, given by equation (54), has
a marked similarity to the asymptotic variation of the small-deflexion frequency with initial
curvature in the extensional mode, given by equation (25) with { = 1:

Qc~ iy
for the dishing mode of a dished plate, and
Qe~ (3) [Kyyo
for the torsion mode of a twisted plate.
The point has already been made that as the maximum curvatures increase, the dishing,
bending and torsion modes become extensional in character. Now in a plate subjected to
static loads there are critical values of the middle-surface forces at which buckling occurs.

It is therefore natural to consider the stability of these modes in the expectation that this
may be related in some manner to the occurrence of static buckling.

Stability of the dishing mode. Consider now a circular plate vibrating in a large-deflexion
dishing mode which is perturbed by a small bending component, say. We wish to determine
the conditions required for the growth of such perturbation. Such growth is, of course,
limited because it depends on a transfer of energy from the primary mode. Now in the stages
immediately following the introduction of the perturbation it may be assumed that the
middle surface forces are sensibly unaffected by the perturbation, so that equation (39)

simplifies to B —i2 (55)
where «, is given by the analysis of § 5-1-1. Equation (385), which governs the behaviour
of the perturbation, may now be written in the form

(/gx——k:y)/(Kx_Ky) ~ %%(I*V——KE)' (56)
Thus when K2 <1—v

the sign of (£,—&,) is opposite to that of (k,—x,), resulting in a stable oscillatory behaviour
of the perturbation. But if at any stage in the dishing vibration

k2>1—v

the sign of (£,—£,) is the same as that of (k,—«,), resulting in a growth of the perturbation.
Now the maximum value of «, is ky and accordingly the criterion for the stability of the

dishing mode is that
g k% < k¥2, 1

57
where K52 =1—.] (57)
It is to be noted that when k% = k%2
the middle surface forces are such that
p=—(1~-v) (568)

which is the critical value at which static buckling occurs in a plate subjected to a pressure
distribution similar to the inertia distribution in the dishing mode. There is, however, an
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important distinction between the static and dynamic cases; in the static case the middle
surface forces maintain the values they have at the onset of buckling, whereas in the dynamic
case the buckling tendency is resisted by the inertia of the plate, and middle-surface forces
in excess of the static buckling values are developed. Indeed, if there is no perturbation the
buckling tendency is completely suppressed.

This simplified stability analysis does not, of course, provide any quantitative information
on the plate vibration. To provide such information figures 9 to 12 have been prepared.

‘These show the variation of «, and «, with 7 for plates released from nearly dished states in

which Ky—Ky = 0-01(kx+Ky),

or Ky—Ky = 002(ky+Ky)

and }(ky+«y)[k% = 1-5in figures 9, 10, and 3 in figures 11, 12. When } (k y+«y) < «% there
is no tendency for the bending perturbation to increase, but when }(ky+«y) > «% the
bending perturbation increases—though not indefinitely—and the resulting vibration loses
its repetitive character. A comparison of figures 9 and 10 shows that a doubling of the initial
perturbation does not affect the magnitude of the subsequent maximum perturbation,
although it hastens its occurrence. Figures 9 to 12 are obtained from a numerical integration
of the governing differential equations because no analytical solution exists. When such
numerical integration is required the general technique in this paper is to write the three
second order equations (114, b,¢) as six first order equations in «,, £,, k,, etc., and then to
employ the Runge-Kutta step-by-step method. All results are doubly checked by retracing
the vibration to its initiation and by repeating the calculation with a halved time interval.

Stability of the bending and torsion modes. 'The determination of the stability criterion for the
bending and torsion modes is similar to that for the dishing mode. It is found that the
criterion for the stability of the torsion mode is that

2 %2
Kxy < Kx¥> 1

(59)
where K32 = 1+v.)
Further, when K%y = K2
the middle-surface forces are such that
f=1+v, (60)

which is the critical value at which static buckling occurs in a plate subjected to a pressure
distribution similar to the inertia distribution in the torsion mode. The criterion for the
stability of the bending mode is obtained by substituting 4(ky—«y) for k xy above.

5:1-4. The curling modes

We have already seen that with increase in amplitude the dishing, bending and torsion
modes become extensional in character. Further, if certain critical curvatures are exceeded
these modes become unstable. Indeed, for the highly dished cases in figures 11 and 12 the
instability is such that at certain subsequent times (e.g. 7 = 15 figure 11and7 =~ 7,12and 17
in figure 12) when the plate is almost at rest the strain energy is largely flexural. 'This suggests
that there may be modes—in the sense described in § 5—which are largely flexural in
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character throughout their motion, but whose existence is only possible when the energy
of the vibrating plate exceeds a certain value. Now any large-deflexion mode which is pre-
dominantly flexural in character will approximate to the curling mode, introduced after
equation (30), for this is the only type of deformation in which there is no straining of the

=
P ]
OH
=
R~
QO K | | i
I O : 4 1'>
= | |
- i |
<Z | Ky'o _:4
=0 ! |
== | |
50 | -0-0549 |
mf, °© ~B— | —
OZ | |
= ! !
Ta ! l
o= : _—
-9 l L l = i{
0-4
0-2
B Ky O(_)_ AN
2‘ -02
5F
O
— "0'4
E 8 Ficure 13. Vibrations in and near a curling mode, circular plate, ky = 9.
=w

middle surface. With this underlying concept in mind we now consider a series of vibrations
in which the plate is released from nearly curled states in which

Ky > Ky, say

and Kyy = O.

PHILOSOPHICAL
TRANSACTIONS
OF

Figure 13 shows the subsequent variations of «, and «, with time for « y = 9, with «, taking
various values between — 0-2 and 0. The variation of «, does not depend significantly on the
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(small) value of «, but the variation of k, shows some interesting features. The ‘smoothest’
initial variation occurs when «j, = —0-0549, and this is the value that the plate would have
if subjected to a static loading similar to the inertia loading in a purely curling vibration.
This value of « is obtained by equating to zero the left hand side of equation (11 4), whence
. — 2k ¢ (14 5v)

5 v B {(5 v 5k%)2 — dx% (1 Hv)
For other values of «, the variation of «, with time is best described as a high frequency
vibration superposed on the ‘smooth’ variation. Thus, confining attention to the first
1-period range it is seen that the period and the amplitude of these superposed vibrations
increase with time. The reason for this is that they are predominantly extensional vibrations
—similar to those considered in §4-2-1—and their frequency varies approximately as the
curvature «,; the increase in amplitude is similarly related to the reduction of effective
stiffness in the plate as the curvature «, decreases. Finally, we note that when «, = —0-1367
the curvatures «, and &, vanish simultaneously, at 7 = 2-478, and the motion is periodic.
Furthermore, the frequency in this curling mode is only 0-2 9, greater than that given by
equation (31).

Figure 14 is similar to figure 13 except that <y = 5 and & takes various values between
—0-2 and +0-15. The smoothest initial variation now occurs when «, = —0-0963 and the
curling mode occurs when «, = -+ 0-0555. Thus, in the curling mode the sign of « differs
from that when « y = 9. The reason for this is that the superposed «, vibrations are less rapid,
because of the reduced value of x5, and change sign once less often during each -period.

Ky (61)

5:1-5. Presentation of results

The modal relations between « x and &, for the dishing, bending and curling modes are
shown in figure 15 where, because the plate is circular, there is symmetry about the lines
Ky = ==ky. Itis seen that there is a series of curling modes associated with separate ‘tongues’
in the «y, k, plane, which become extensional in character for large values of |ky«ky].
A further point of interest occurs at the intersection of the first curling mode with the bending
mode; at that point (—0-836, +0-836) the magnitude of «, «, coincides with the critical
magnitude in the dishing mode (see point a) above which the dishing mode becomes
unstable. Furthermore, the intersection is at a point of modal indeterminacy, in that the
frequency of a small dishing component superposed on the bending mode coincides with
the frequency of the bending mode itself. ‘

The variation of frequency with amplitude is shown in figure 16 where the points a,...,h
correspond to those in figure 15, enabling the various curves to be identified. It is seen that
when «, > 0-836 the lowest frequency is that associated with the curling mode and, except
in certain localized regions, it is insensitive to changes in amplitude.

Figures 17a, ..., h show the variations of k,, «, with time, in modes corresponding to the
points a, ..., h in figures 15 and 16; points a and b are at the points of limiting stability
discussed in §5-1-3.

5:1-6. Stability of the curling modes
To obtain some idea of the stability of the curling modes figures 18 to 21 have been
prepared. These show the variation of k,, k, and £ with time up to 7 = 25 for circular plates

39-2
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released from states which differ from modal relations by varying amounts. Figures 18, 19, 20
are for ky = 9 and, respectively, ky, = —0-13, —0-1, 0, values which may be compared with
—0-1367 for the curling mode. It is seen that the resulting vibrations are sensitive to varia-
tions in ky, although these variations are small in comparison with «y. Figure 21 is for

25 — —

3 T 4 i5

~———— F-period ————

s [ 1

-08 [ l l |

Ficure 14, Vibrations in and near a curling mode, circular plate, ky = 5.

kx = 10 and ky = 0, compared with —0-263 for the curling mode. The resulting vibration
is much more unstable than that in figure 20, and this is due to the greater departure from
the modal relation which is, itself, reflected in the varying curvature near point h in
figure 15.
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5:2. Dishing modes of a dished circular plate
In this section we consider another ‘vibration in unison’, namely the large-deflexion
dishing mode of an initially dished circular plate. For such a plate the governing differential
equation is obtained from equations (10) and (11) by writing

Ky, 0 = Ky,0 Ko = 0,
N ) ; K, = Ky) ny ==
whence, 1n terms of «,, )
2Kx+ (l +V) (Kx—Kx,O) +Kx(Kazc—K§,0) = 0. (62)
To)
h /
.
CURLING
A
d KY ['4
CURLING ,
BENDING c DISHING
o)
\ N .
~ -
-6 -4 -2 o 2 Kk, 4 6

X
Ficure 15. Modal relation between «y, «y: circular plate.

It is convenient to define «, positive, which involves no loss of generality.
Now although the terms in equation (62) are nondimensional there are certain
advantages, particularly a unification with the analysis of § 5-3, in introducing the following

parameters A = 3k,0/2(1+ +2K§,0)'%,

V= (Kx_Kx,O)/(l +V+2K12c,0)%9 (63)
Qf = $(1+v+245,),
where A is a measure of the dishing curvature in the undisturbed state, and varies between
zero and £,/2, y is a measure of the displacement about the undisturbed state, and, from the
analysis of § 4-2, () is the nondimensional frequency appropriate to small deflexions in the
dishing mode. In terms of these parameters equation (62) reduces to
7+ Qgy(1+2Ay+7%) =0, - (64)

which may be integrated as follows.
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Ficure 16. Frequency variation with amplitude, circular plate.
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Freure 17. Variations of «,, k, with time; circular plate.
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Expressing 7 in the form y dy/dy leads immediately to a first integration of the form
49)? = — QF [(1+2A7-+7) dy

= 15[V, — (22 +-8A7°+74)], (65)
where the constant of integration U, depends upon the initial conditions. If the plate is
released from rest when y = y,, say, the constant is given by

Uy = 273+ 51+ (66)
The further integration of equation (65) yields
4 dy
Qo1 =2 f .
T G e A
This s an elliptic integral whose form depends markedly on the value of A and the amplitude
of vibration.

(67)

5:2-1. Strain energy in the plate
Before considering equation (67) in further detail it is convenient to determine the strain
energy in the plate, for this is intimately related to the coeflicient U. Furthermore, con-
sideration of the strain energy variation with y provides a simple physical insight into the
different types of dishing mode—and hence into the proper interpretation of equation (67).
The strain energy in the plate U* is the sum of that due to bending and that due to
straining of the middle surface.

U* =} [ [ DUV w— )= (1) O*(w— g, 0= w)] d4
11 [ [ g {(720)2- (14) 04(®, @)} dd

= %—WDO abﬂz[(l(x+Ky*—-Kx‘0——Ky’0)2~~ 2(1 - V) {(Kx_" Kx,O) (Ky_Ky.O) - (nyHny,O) 2} +ﬁ2]
, (68)
Thus, for the initially dished circular plate,

U* = inDya*u®>Q U, say,l
where U=2p2+8A+74 |
which is nondimensional. Thus we have identified the term in the square bracket in
equations (65) and (67) as the difference between the initial (nondimensional) strain
energy U, and the current strain energy U. Indeed, equation (65) is simply a statement of
energy conservation:

(68a)

kinetic energy - strain energy = constant,

and the integrand in equation (67) is a measure of the plate velocity. Note that the maximum
value of the plate velocity occurs when y is zero, and is given by

(70)2 = %Q%Ul (69)

Consider now the variation of U with y. If 0 < A <1 the function U has only one
minimum, at y zero, as typified by the curve for A = 0-97 in figure 22a. If A > 1 the function
U possesses two minima as typified by the curve for A = 1-04 in figure 224. These points of

40 Vor. 261. A.
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minimum strain energy correspond to stable equilibrium positions; the condition that
A > 1 implies that k, , > 2(14v)* which is the condition (Mansfield 1965) for the existence
of a stable ‘snapped-through’ state in which

Ky = Ky = _%Kx,O*JZ{K?:,O*LL(l +V)}%
or, in terms of y, A, y=—A—(A2—1)* =y, say. (70)
l 9 x | o
U 7]
0-3 03
R 72 73 %
| I l |
-1-0 o Y 05 -2 -1 o 7 05
(@ A =097 (5) A = 1-04

FI1GURE 22 (¢ and 4). Variation of strain energy U with displacement 7.

By the same token an unstable equilibrium position of maximum strain energy occurs when
y=—A+(N=1)} =y, say. (71)

The strain energy in the plate at these stable and unstable equilibrium positions is given by
Uy=—1+4A2—-8A*—8A(A2— 1)%,1

U, =—1+4A2—$A* 1 SA(A2—1)2.

The significance of these energy expressions becomes apparent when we consider what
happens when the plate is released from a state of rest at (y,, U;). At a subsequent time when
the plate is at (y, U) the kinetic energy is proportional to (U, — U). The motion is therefore
analogous to that of a frictionless bead acted on by gravity and constrained to follow the

(y,U) curve. In this analogy the change in strain energy (U,—U) corresponds to the
velocity of the bead. The analogy also shows that the plate next comes to rest at the point

(y9, U,) say, where U, = U,

(72)

(73)
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The limits of vibration are thus determined by those states which possess the same strain
energy. In general there are only two such states, but when

A>1 1

74
and US<U<UuJ )

there are four states, as shown in figure 22 5 where they are identified by the suffixes 1, ..., 4.
Vibrations may then occur with limits of 7;, 7, or ¥3, 74, the former corresponding to vibra-
tions about the stable snapped-through state.

Consider now the solution of equation (73). Substitution from equations (66) and (68)
shows that y, is a root of the equation

2y°+§AY 9 = i +H5AV L (75)
from which the factor (y—7v,) may be extracted to yield

2(y+71) FEA@P Hyy +9D) + (v +y) (P41 = 0. (76)

We have, of course, already determined the conditions for the presence of one or three real
roots of this cubic. The three real roots have been denoted by 7,, 75, 7, and we have adopted
the convention that y, < y, < y5 < 7,; when there is only one real root it is convenient to
introduce further notation, namely that equation (76) is cast in the form

(r—r){(y—7)?+s% =0, (77)
where 7, s are real.
Although the roots of equation (76) are most readily determined by numerical methods

the following special cases yield simple analytical solutions.

Case in which U, = U,. In this case (y—7,) appears as a double root and equation (75) is
therefore of the form
A+ (A=) (r—75) (y—74) = 0, (78)
whence, by equating coefficients of powers of y in equations (75) and (78),
Yo, = — BA+ (A2— 1)FF 3{A?— BA(A2— 1)1} (79)

Case in which U, = U,. In this case (y—7v,) appears as a double root of equation (75) and

accordingl
= Too = — A (AT 1)EF AT BA(AT— 1)1 (80)

Case in which A = 1, U, = U, = U,. This is a special case in which the plate is at a point of

neutral stability at y = — 1, so that the factor (y+ 1) appears as a triple root of equation (75)

and hence
71,2,5=—1, Vs = 3 (81)

5.2.2. Elliptic integral representation of the solution

We are now in a position to express equation (67) in terms of elliptic integrals,
and hence to determine the frequency of vibration, etc. We consider first those
40-2
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cases which are not covered by condition (74) and which can therefore be cast in
the form ) dy
—
TN ) G o= AL
= (2[pg)t F(ks, a3),
V2 (p— ) 2)E
where ks :l{(yz 70— (p—9) } ,
2 bq (82)
B
—_ 2C0t—1 :Q(L’Z;‘_ZE}‘ R
" p(r—n1)
= (7—72)2—’—323
¢ = r—p)trst
The }-period of vibration is given by
Qo[()y,— (7)y,] = (2/pq)* {F (k, m) — F (k3 0)}
= 2(2/pq)* K(ks).
The frequency (2 is thus given by
-9 2 Zﬁq
(o) = siktigr (83

Those cases which are covered by condition (74) yield two solutions, depending on
whether the vibration is about the stress-free equilibrium position or about the snapped-
through equilibrium position. Vibrations about the stress-free equilibrium position are
determined by

7 =2 f wl—7) (r— h)d(yy ¥s) a—7) 1
=2( i) Tl -
S =S
SRR G
The frequency Qs given by (2%)2 _ ”2(7;);&?( /g;}; 7, (85)
Vibrations about the snapped-through state are given by
=2 (o e e e
(G506 ﬁs)%”’% %); (50
==
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It follows that the frequency is again given by equation (85). This means that for a given level
of energy the frequency of vibration about the snapped-through state is the same as that
about the stress-free state. The maximum value of the plate velocity occurs at y = ¥, and

is given by (7.2 = +Q3(U,—U,). (87)
The elliptic integrals presented here simplify, as follows, for the special cases discussed

in § 5-2-1 which exhibit repeated roots of equation (75).
Case in which U, = U,. The term k, in equation (84) is now zero and the solution can be

cast in the form Y—Ys  (Ya—7Vs\ - r1 .
P (BT sin (3 Qb= 2) (5.0} (55)

where y, , are given by equation (79).

Case in which U; = U,. There are two cases to consider in which, in theory, the plate
eventually reaches the unstable equilibrium state y, after release from y, or y,—given by
equation (80). For the plate released from ¥, the term £, in equation (86) is unity and the
solution can be cast in the form

L 1+
Qurfhri—7) (u—r)P =1In (),

(14— 1) - m) )
where _ { Ya—7u) ¥ =7 } .
T =00 (=)
If the plate is released from y, the solution is
1
Qurld(ri—7) n—r)ft = 1o (757 (90)
Case in which A = 1, U, = U, = U,. If the plate is released from the state y, = %, it will
eventually reach the state of neutral stability at y = —1, according to the relation
12
RS To 7 o)

5:2:3. Presentation of results

Numerical results for the dishing modes of dished circular plates have been determined
for a range of initial curvatures and amplitudes. Figures 23, 24 and 25 are phase-plane
diagrams for A = 0-8, 1-0, 1-04 respectively, in which /€2, is plotted against y for a variety
of amplitudes of vibration; if the vibration were sinusoidal these curves would be circular.
Figure 26 shows Q/Q, plotted against [7/£2] .y, for various values of A. The relationship
between €2/, and the amplitude of vibration may, of course, be determined from figure 26
and the appropriate phase-plane diagram. The broken curves on figures 25 and 26 cor-
respond to vibrations about the snapped-through state. Finally, we note that the values
chosen for A, namely 0-8, 1-0 and 1-04, correspond to initial curvatures which are respec-
tively 0-406, 1-:0 and 1-77 times the critical initial curvature, ,, = 2(1+»)*, above which
a stable snapped-through state is possible.

5-3. Torsion modes of a twisted elliptical plate

In this section we consider another ‘vibration in unison’, namely the large-deflexion
torsion mode of an initially twisted elliptical plate. For such a plate the governing dif-
ferential equation is obtained from equations (10) and (11) by writing

Ko = Kyo = Ky = Ky = 0,
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=IO
Ficure 23. Phase-plane diagram, A = 0-8,

_O,s_.

| | —
Ficure 24. Phase-plane diagram, A = 1-0.

whence 3R+ (1 =) (Kyy—Kyy0) F Ky (K3y— K3y 0) = O. (92)

This equation can be written in the form of equation (64) by redefining the parameters

A,y and €, as follows: A = 8k,,0/2(1 —v-+ 22, 0)},

Y= (ny_ny,O)/(l _V+2K§y,0)%> (93)
QF = 5(1 —v+2«%y),
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T l-O‘

l l ——
Ficure 25. Phase-plane diagram, A = 1-04.
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Ficure 26. Variation of frequency with maximum velocity.
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where A is now a measure of the twisting curvature in the undisturbed state and again varies
between zero and £,/2, y is a measure of the displacement about the undisturbed state and,
from the analysis of § 4-2, ), is the nondimensional frequency appropriate to small deflexions
in the torsion mode. This redefinition means that the remaining analysis of § 52, including
figures 23 to 26, is now valid for this torsion case. We note, in passing, that the condition
that A > 1 implies that «,,, > 2(1—»)* which is the condition for the existence of a stable
snapped-through state of reversed twist in which

Kyy = — %ny,o - %{Kﬁ%y,o - 4(1 - V)}é . (94)

, 5-4. Flat elliptical plate
5:4-1. The torsion mode

For the flat elliptical plate the only large-deflexion ‘vibration in unison’ is the torsion
mode. The governing equation is the same as equation (48) for the circular plate and the
corresponding analysis of § 5:1-2 is therefore valid for the ellipse. This does not mean that
the actual vibration is not influenced by the ellipticity, because the nondimensional terms
K> T are themselves dependent on the plate dimensions.

5:4-2. The dishing mode

Before discussing the large-deflexion dishing mode of a flat elliptical plate it is instructive
to consider the behaviour of a plate released from a state « y, k, whose shape is appropriate
to the small-deflexion dishing mode, equation (17), but whose magnitude is such that large-
deflexion effects would be expected. Now large-deflexion effects become significant when g,
which determines the middle-surface forces, cannot be neglected. Furthermore, static
buckling of the plate occurs when

~ Vo

_ g%, say, J (58 bus)
and, with this in mind, we have chosen the magnitudes of «, k£, to be such that the initial
values of § are {f* and f*. Figure 27 corresponds to the initial value of 1#* and shows the
variation of,, k, and f with 7 for a plate in which { = §. Itis seen that x, and , do not vanish
simultaneously—indeed, this is also reflected in the occurrence of small but positive values
of f—and the motion cannot strictly be described as a mode. Furthermore, the initial
(negative) value of £ is sometimes exceeded in the subsequent motion which is, nevertheless,
of a stable character. Figure 28 corresponds to the initial value of f*. The subsequent motion
shows much larger variations from a purely modal behaviour; peak (negative) values of §
considerably in excess of f* occur, and this tends to produce an unstable vibration with an
interchange of extensional and flexural energies.

The values of k, ky necessary for a true dishing mode, for a plate in which { = 2, have
been obtained by a trial-and-error process. For each value of 4, say, a series of values of k,
is chosen and the subsequent motions are determined by numerical integration of the
governing equations. At the correct value of «, the curvatures «,, «, vanish simultaneously
at the i-period of vibration. The search for the dishing modes is, of course, helped by
knowledge of the small-deflexion mode, and also by the asymptotic modal behaviour with
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very large curvatures. The asymptotic behaviour is obtained by considering only the / terms

on the left hand sides of equations (11a, 6):
— Kok, (Kt 5%, ) ~ 12’@:1 (95)
— KoK, (5L, 4 K,) ~ 12/'<'y.J

It can be verified that these asymptotic equations are satisfied by a ‘vibration in unison’ for
which the term ‘dishing’ is more appropriate than hitherto, because the edge of the plate
lies in an (oscillating) plane

Kk~ £, (96)
where K3~ —20%,. (97)
A comparison with the analysis for the asymptotic behaviour for the circular plate shows
that the frequency again varies asymptotically in proportion to the amplitude

Qq~ 0-599¢1 |k (98)

Finally we note that the asymptotic mode, equation (96) is also a ‘similar’ small-deflexion
extensional mode for a plate with large initial curvatures, see §4-2:1, where the term
‘similar’ is used to imply that

61169163 = K0t Ky 0t Ky or (99)
Furthermore, the corresponding small-deflexion extensional frequency for such a plate is

iven b _

& Y Qe §H k0 (100)
which is closely related to equation (98).

The velocity components of the plate [£,],, [£,], as it passes through the equilibrium
position may be determined from the relation

[Eﬁ] = lim [5&] (101)
Ky Ky=Ky=0 Ky Ky Ky=>0

and the equation of energy conservation

[kinetic energy],-,,-o = [strain energy], . . .

This equation corresponds to equation (69) for the circular plate, and reduces to
50 2[K5 ]+ 5?[’%]0 — 2[@’@]0 = 2{(Kx+Ky) 2= 2(1—V) K xK p+- K% KE . (102)

5:4:3. The bending mode

The analysis and computational technique for determining the large-deflexion bending
mode of a flat elliptical plate are similar to those for the dishing mode, and accordingly we
quote only the results. The asymptotic behaviour is obtained from an alternative solution
of equation (95), namely

Ky~ _€2Ky) (103)
where k3~ —30%K,. (104)
The frequency again varies asymptotically in proportion to the amplitude

Q,~ 0-489¢1 | k. (105)
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The asymptotic mode, equation (103), is also a ‘similar’ small-deflexion extensional

mode of a plate with large initial curvatures satisfying equation (99) for which
Qe~ (3 o (106)

Equations (101) and (102) suffice to determine the velocity components of the plate as
it passes through the equilibrium position.

Itis of interest to note that with increasing curvature the character of the bending mode
changes to a much greater extent than in the dishing mode. Indeed, from being a small-
deflexion mode with & the dominant curvature, it becomes a large-deflexion mode with
ky the dominant curvature—as in the dishing mode. However, simple physical reasoning
suggests that there will be a large-deflexion mode in which « is the dominant curvature,
and this is indeed the case. It is the curling mode—similar to that discussed in § 5:1-4—and
it is considered in § 5-4-4.

Stability of the torsion, dishing and bending modes. The stability characteristics of the torsion
mode of an elliptical plate are similar to those of the circular plate, equations (59) and (60).
Some information on the stability of the dishing mode has already been given in figures 27
and 28, where the initial values chosen for x5, £ can be regarded as perturbations from the
modal values. However, for the case in which initially § = #*, the magnitude of the perturba-
tions was unduly great, the curvatures being +20 %, from the modal values; at this critical
initial value of # a perturbation of this magnitude might be expected to have a marked
destabilizing influence on the ensuing vibration.

5:4-4. The curling modes ,

The technique for determining curling modes is similar to that discussed in § 51-4 for the
circular plate, but there is now no condition arising from the rotational symmetry of the
plate, and separate computation is required for curling about the major and minor axes.
The frequency for curling about the minor axis is given approximately by equation (31);
similarly, that about the major axis is given by

O ~ 202 (107)

Small twisting component superposed on curling mode. In §5-1-4 the curling mode for the
circular plate was regarded as a close neighbour of a ‘smooth’ vibration in which the
smaller, transverse curvature was initially unchanging; in the curling mode the transverse
curvature, and hence the middle surface forces, oscillate about their values in this ‘smooth’
vibration. There are similar relationships and features for the elliptical plate, but the point
we wish to emphasize here is that during a curling vibration the average value of the middle-
surface forces is nonzero. Now the torsional stiffness of a thin strip is altered by the presence
of middle-surface forces—whether mechanically or thermally induced—and hence we
would expect the frequency of a small twisting component superposed on a curling vibration
to differ from its small-deflexion value. The actual behaviour is complex but the following
approximate analysis goes some way in providing a physical understanding. With «,,, etc.,
zero equations (114, b,¢) may be cast in the form

(B—5L2—v) k,+ (6% —1—bv{?) k, = 12K,, (1084)
(6§26 —1—5v{2) k4 (f—v—5(?) k, = 12K, (1085)
(B+1—v)Ky+ 3K, = 0. (108¢)

41-2
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If now we search for solutions in which «, is large in comparison with «,, ,,, equation
(108) yields 9
p— V+3 , (109)

provided also that £, is negligible. Strictly speaking, therefore, this limiting form for £ is appro-

priate to the ‘smooth’ vibration rather than the curling mode but, as explained previously,

it is also the average value in an asymptotic curling mode. Substitution of equation (109)
. . ] )

back into equation (1084) yields 2C%,+0(k,) = £,y

whose solution is k,~>kycos{(2)¥{r}, (110)

which thus provides a simple check on the analysis; indeed, equation (110) could have been
used to derive equation (109). Finally, substitution into equation (108¢) yields

(1 _l__é_€2) ny+ 3ny = 09

whose solution is Ky = K xy COS L7,

v | (111)
where 2 =3(1+302,)
so that the frequency always exceeds the small-deflexion value given by

Q2 = 1(1—v). (16 bs)

Note also that for the circular plate ({ = 1) the frequency given by equation (111) coincides
with the curling frequency; this is because the effect of the small initial twist is confined to
an alteration in the direction of the axis of curling. When { < 1 the twisting frequency
exceeds the curling frequency.

Although the above analysis is of an asymptotic character, it yields tolerable results for
quite modest values of the nondimensional curling curvature. For example, figure 29 shows
comparisons with the true variation with time of «,, «,, and £ over the range 0 < 7 < 50 for
a plate in which { = % and, initially, xy = 2:297, Ky, = 0-080, k, = 0-0028. These initial
curvatures have been chosen because they correspond to a purely curled state with gene-
rators inclined at 2° from the minor axis of the ellipse; furthermore, the magnitude of the
(nonzero) principal curvature, namely 2-300, is such that if the generators were parallel to
the minor axis the subsequent motion would be repetitive. According to small-deflexion
theory the (nondimensional) time interval between successive zeros of «,, is 6-51, whereas
from equation (111) the interval is 5-22. In the example treated in figure 29 the average time
interval is 5:60, successive intervals being }(5-40), 5-52, 6-01, 5-55, 5:40, 549, 5-99, 5-62
and 5-39.

5:4-5. Presentation of results

For the special case in which { = £ the dishing, bending and curling modes have been
determined over the range |«y| < 4, |«,| < 6. The modal relations between «y and «,, are
shown in figure 30 where, because the plate is flat, there is point-symmetry about the origin.
The general pattern of curling modes associated with separate ‘tongues’ is similar to that
for the circular plate, but there is no longer any intersection between the bending mode and
a curling mode. The variation of frequency with amplitude is shown in figure 31 where the
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Ficure 30. Modal relation between ky, «y: elliptical plate, { = 2
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Ficure 31. Frequency variation with amplitude, elliptical plate: { = £.
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points a, ..., h correspond to those of figure 30, enabling the various curves to be identified.
Figures 324, ..., h show the variations of ,, x, with time, in modes corresponding to the
points a, ..., h in figures 30 and 31.

3 1-74
Ky ¢ Kx d
Kx
o) ] o | | ! j
3 36
Kx -\\ x
e f
| | | | |
SN TT 2 o 2
Ky
4 4
Ky g Ky h
(o)
-—-—<K"| T 2 OO T 2
x

Ficure 32. Variations of «,, x, with time; elliptical plate, { = 3.

5-5. Curved elliptical plate

Apart from the special cases considered in §§5-2 and 5-3 the large-deflexion vibrations
of an initially curved elliptical plate are not ‘in unison’ and the governing equations must
be integrated numerically. A wide variety of vibrations is possible and here we confine
attention to those which exhibit the most interesting and important features.

5:5-1. Bending vibration of a dished circular plate

This case is considered because it is comparatively simple and because, from the analysis
of §4-2, the small-deflexion mode is independent of the magnitude of the initial dishing.
Intuitively, we might therefore expect that the dishing curvature would introduce a
measure of ‘slackness’ into the bending mode, so that, in comparison with the flat plate,
a given amplitude of vibration would result in a smaller increase in frequency. To test this
hypothesis we consider a circular plate in which

Ko = Kyo = 1, say,
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and search for modal relations along the following lines (shown chain-dotted in figure 33)
ky=-4i+ky (1=1,2,3),
for these are orthogonal to the small-deflexion modal relation and of fixed (bending)

amplitude, namely 7,/2. The modal points so determined are identified by the points ¢; in
figure 33. Also shown in figure 33 are the relations between «,, «, during the corresponding

T L 1 T

&
O‘\
o ¢Q —_—
ooo
K
O & &
‘ NI
Ky,K. L 9
Y Qov
K3
POSITION

\
\(EQUILlBRIUM

77

o)
O

Frcure 33. Bending vibrations of dished circular plate: curvature relations for
different amplitudes.

modal vibrations; these are symmetrical about the line «, = «,. The broken line is the
hyperbola along which £ is zero; points to the left of this line correspond to positive values
of f, with negative values to the right. It is to be noted that the vibrations are no longer
‘in unison’ as they are for the flat plate nor, indeed, do they pass through the equilibrium position.
These are, of course, large-deflexion features but they are generally valid for all curved
plates, exceptions being those cases considered in §§ 5-2 and 5-3.
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TABLE 1. VARIATION OF () AND f§ WITH AMPLITUDE

7 0 1 2 3
Q,, flat plate 0-483 0-543 0-691 0-883
Q,, dished plate 0-483 0-490 0-510 0-586
Pumin, flat plate 0 0 0 0
nax.» Hat plate 0 0-25 1 2-25
Pumin dished plate 0 —0-017 —0-256 —1-50
max.» dished plate 0 0-095 0-394 1-57

The corresponding frequencies are given in table 1 above, where they are compared with
those of equal (bending) amplitude in the flat plate. The small-deflexion values are given
by ¢ = 0. It is seen that with increasing amplitude the increase in bending frequency for the
dished plate is markedly less than for the flat plate. This comparative ‘slackness’ is due to
the much reduced overall effect of the middle surface forces, specified by f. The extreme
values of # in each cycle are also shown in table 1. Not only are the maximum values of #
reduced but, for the amplitudes considered, the values of # at the limits of the vibration are
of opposite sign to those for the flat plate so that they have a destabilizing influence. It
follows that the ‘slackness’ is confined to regions of large amplitude where, because the
velocities are small, the influence on the frequency is especially marked. When ¢ = 3 the
value of # at the stationary points «, is algebraically greater than the critical value — (1—v),
and this accounts for the reversal in the initial direction of the bending component. Needless
to say, this particular vibration is unstable, butit doesillustrate the point that an ‘amplitude’
may not necessarily be an uncontroversial method for specifying a nonlinear vibration.

5:5:2. Modes containing a given amount of energy

In the previous example modes of a given amplitude were determined, but this was
facilitated by an element of symmetry in the problem. Without such symmetry the concept
of a given amplitude tends to lose its significance or, at least, requires a more elaborate
definition. In such instances it is useful to consider modes containing a given amount of
energy.

As an illustrative example we consider a plate specified by

— 2 — —
(=% Kpo=1, Kyo==—2

and we search for modes in which
U* = 0-1625mDyaby?, say,

which is one-sixth of the energy required to ‘flatten’ the plate. From equation (68) the
curvatures « y and «, thus satisfy the equation

(K xt+Ky+1)2=2(1 =) (kx—1) (ky+2) + (Kxxp+2)? = 1-3, (112)

which is shown by the broken line in figure 34. By considering the behaviour of the plate
released from points on this curve of constant energy it is found that points a,a’ and b, b’
yield modes. The corresponding «,, «, relations are shown by the full lines and it is to be
noted that these do not pass through the static equilibrium position nor do they possess any
element of symmetry.

42 VoL. 261. A,
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5:5-3. Vibrations passing through the static equilibrium position

The point has already been made that large-deflexion modes of curved plates do not, in
general, pass through the static equilibrium position. Let us, however, relax the condition
that in each cycle there are times at which all the velocities vanish, and then investigate the
possibility of repetitive vibrations which pass through the static equilibrium position at
least once in each cycle. Such ‘modes’ do not, in fact, exist as can be seen from the following

CURVE OF CONSTANT
STRAIN ENERGY /
/

-0'8
\ e
! ’ l
AN <210
Ficure 34. Modes associated with a given amount of energy: { = %, k,, = 1, K, = —2.

illustrative example which is identical to that considered in § 5-5:2 except that the plate is
given an impulse from its equilibrium position, the resultant kinetic energy being equal to
the previously considered strain energy. Furthermore, just as we previously considered the
plate behaviour following release from all points on the strain energy curve, so we now
consider its behaviour when the initial kinetic energy is associated with all initial velocity
ratios. The initial velocities may thus be expressed in the form

[kx]7'=0 = VCOos 071

[£,];=0 = v sin 0, (113)

where, from equation (102),
v2(5{~2cos?0+-5{?sin?0 —2sin 0 cos ) = 16U* [nDyabu?
= 2-6 in this example. (114)
The «,, «, relations for the cases of interest are shown in figures 354,...,d and 364, b.

In figure 35 the plate curvatures follow paths which touch the bounding strain energy
curve—shown again by a broken line—whence, because the plate is then instantaneously
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Ficure 35, Vibrations returning to the equilibrium position after attaining state of rest.
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at rest, they retrace these paths to the static equilibrium position. The subsequent motions,
however, are far from repetitive as can be judged from the extent to which the next ‘returns’
miss the static equilibrium position. In figure 36 the plate curvatures follow paths which
do not reach the bounding strain energy curve so that the plate is never at rest; the plate
passes through the static equilibrium position after one (approximate) cycle, but the
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Ficure 36. Vibrations returning to the equilibrium position after completion of
approximate cycle.

velocities at the equilibrium position differ from their initial values so that the vibration
is not repetitive. In figure 364 the angle § changes from an initial value of 17-7° to 25-8°;
in figure 36 b, f changesfrom 106°to 91-7°. Because of the reversibility of vibrations figure 36«
is also appropriate—with arrowheads reversed—to an initial value of ¢ = 205-8° (i.e.
180°+25-8°) ; similarly figure 865 is appropriate to an initial value of 0 = 271-7°.

The vibrations treated in this and the preceding section are associated with a given
amount of energy. If progressively smaller amounts of energy are considered it is found that
the vibrations typified by aa’ in figure 34 and the curves in figures 354, ¢ and 364 approach
the small-deflexion bending mode, equation (22), for which § = 46-6°. Similarly the other
curves approach the small-deflexion dishing mode for which 6 = 97-7°.

Stresses in a numerical example. The middle-surface and bending stresses have been deter-
mined from § 3-2-1 for a plate which corresponds to that considered in §§ 5-5-2 and 5-5-3;
the plate is specified by

a=30in., b=20in., #ky=$in., E=10"Lb./in? (v=0-3),
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and the curvatures in the stress-free state are such that
[Woli=ta, y=o— [Woli=o, y=o = —2-51in.,
and [Wo) =0 y=+6— [Wols=0, y=o = 2:231n.

It follows from §3-2-1 that for all plates of the type considered the maximum middle-
surface stress occurs at the ends of the minor axis, whereas the maximum bending stress
occurs at the centre. Furthermore, the middle-surface stresses and the bending stresses vary
parabolically over the plate so that their sum also varies parabolically. The bending
stresses are, of course, zero at the boundary of the plate and it follows that the maximum
combined stress occurs either at the ends of the minor axis or at the centre.

In this numerical example the maximum combined stresses have been determined for
configurations corresponding to points a, a’, b, b’ in figure 34. At the ends of the minor axis
the greatest stress occurs in configuration b and is given by

0, = —28700Lb./in%
At the centre of the plate the greatest stress occurs in configuration a’ and is given by
7, =—21900Lb./in?

of which 98 %, is due to the bending component.

5:5:4. Bending vibrations of a plate exhibiting Brazier instability

It is well known (Brazier 1927) that a long strip with transverse curvature may buckle
under the action of an applied bending moment, due to the flattening of the cross section.
The analysis for this Brazier instability is customarily restricted to an infinite strip, thus
making the problem one-dimensional. Here we consider a finite (elliptical) plate acted on
by distributed (inertia) loads—a two-dimensional version of the phenomenon—and we
determine also the vibrational characteristics of such a plate.

To clarify the position we consider first the static behaviour of a plate with initial (positive)
curvature ko subjected to a distributed load proportional to the inertia loading in the «,
component. It is convenient, but not essential, to envisage a small value for { so that the
plate is not too dissimilar to a strip. With «,; = 0 the governing equations may be deduced
from equations (10) and (11):

(5824-v) k,— (L+5v{?) (K, 0—K,) KK, (K, +5C%,) = m, (115)
(145082 k,— (B2 4-v) (ky0—K,) + KK, (50 %k, +&,) = 0. (116)

where m is a measure of the applied load.

The transverse curvature «, can be eliminated from these equations to yield the m, «,
relation. It is found that for a given value of { there is a critical value of x, , above which
dm/d«, = 0 for some positive value of «,, and another critical value above which dm/d«, = 0
for some negative value of «,. The fact that there are two critical values, rather than one, is
because the section is not symmetrical about the plane of bending; when m is of the same
sign as «,,, the anticlastic curvature due to the Poisson’s ratio effect tends to flatten the cross
section, and this accounts for the positive peak value of 7 being smaller than the negative
peak value.
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FiGure 37. m, k, relation in plate exhibiting Brazier instability; § = }, «, o = 2-5.
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Ficure 38. Modes of an elliptical plate exhibiting Brazier effect; { = , ko = 0, k, o = 25.
(a) ky =—05, Ky = 2:153; (b) ky = — 10, ky = 1-370.
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A typical example which exhibits Brazier instability with positive and negative values of
K, occurs when { = 1, k, o = 2-5; the corresponding relation between m and «, is shown in
figure 37. If the load is increased beyond points 4, B the plate snaps through to points 4°, B’.
In a vibration, however, the plate does not snap through, because the inertia load is itself
reduced beyond points A4, B. The behaviour is similar to a vibrating mass attached to a
spring whose load-deflexion characteristics follow the m, «, curve; the analogy is not rigor-
ously exact because it ignores the inertia effects associated with the transverse curvature «,.
The actual behaviour is exemplified in figures 384 and b which show the modal vibrations
of this plate following releases from given curvatures «y, namely —0-5 and —1-0. It is
found that a mode occurs when «, has a value close to that given by equation (116) ; in other
words, the initial value of the transverse curvature is given approximately by static con-
siderations. Also plotted in figure 38 are values of «, related to the current value of «, by
equation (116). The closeness of this curve to the modal variation is a reflexion of the
validity of the analogy considered previously.

Finally, we note that the differing time scales of figures 384 and b conceal a marked
difference in frequency; when «y = —0-5, Q = 0-353, and when ky = —1-0, Q = 0-233,
values which may be compared with 0-421 for the small-deflexion frequency.

We are grateful to Mr B. C. Merrifield for his help in the computation and preparation
of the figures. |
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